Predictability Horizons: Part II Recent Examples from 2013-2014

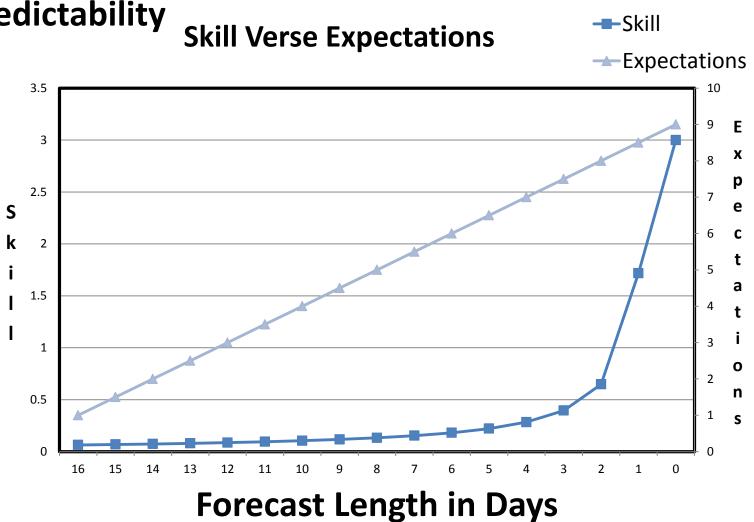
Richard Grumm

NOAA/NWS State College, Pennsylvania

and

Justin Arnott

NOAA/NWS Gaylord, Michigan


2014 National Weather Association Annual Meeting

Salt Lake City, Utah

Overview

- How to make good impact-based decisions
 - Mindful of predictability horizons
- Lead-times as forecast horizon shortens
 - Predictability should increase as forecast length decreases
 - Highest user expectations at shorter ranges
- Tools of the trade
 - Days 2 10 GEFS/EC-EFS/CMCEFC/ NAEFES
 - Single models are a fools-errand
 - Days 1 3 Regional Ensembles and blend deterministic models
 - Hours 0 15 Short-term high resolution guidance 0-15 hours
 - Hours 0 6 blend models and observations
 - We have a lot to learn in the transition from radar/satellite to high resolution models and high resolution models to regional scale ensembles.

Be Mindful of the intrinsic and Practical limits of **Predictability**

Forecast Length and expectations

Predictability better at shorter ranges

- Generally skill increases as forecast length decreases
 - More spread in ensembles at longer ranges!
- We all know this \rightarrow
 - Yet hype-casters jump on long range forecasts of big events

Highest user expectations at shorter ranges

- Users know basic skill issues → Predictability horizons
- They expect more details shorter ranges

Summary

- Making good impact-based decisions
 - Always be mindful of predictability horizons
 - Longer range forecasts will change
- Lead-times as forecast horizon shortens
 - Predictability should increase as forecast length decreases
 - Highest user expectations at shorter ranges
- Using current tools at hand and examples
 - Short-term high resolution guidance 0-15 hours
 - Ensembles 6 to 384 hours
 - Balance "weather-hype" from social media